xy=e^(x+y)求dy/dx
问题描述:
xy=e^(x+y)求dy/dx
答
dy/dx=(-y+e^(x+y))/(x-e^(x+y))
答
xy=e^(x+y)求dy/dx 这是隐函数求导问题:正统方法是用:隐函数存在定理来做;另一方法是等式两边对x求导,再解出y'来:方法1:f(x,y)=xy-e^(x+y)=0 dy/dx=-f'x/f'y f'x=y-e^(x+y) f'y=x-e^(x+y) dy/dx=-[y-e^(x+y)]/[...