泰勒公式应用

问题描述:

泰勒公式应用
同济大学版《高等数学》(第六版)
习题3-3,第9题第(1)题,要求用三阶泰勒公式求 30开三次方的近似值
首先我设 f(x)=x^(1/3),然后我取Xo=1推导出其对应的三阶泰勒公式为:
f(x) = 1 + 1/3*(x-1) - 1/9*(x-1)^2 + 5/81*(x-1)^3 +o[(x-1)^3]
为什么我不能直接在此处令x=30求值呢?
看习题解答,都是利用(1+x)^α的泰勒公式,x值都是比较小的数,即30=27+3=27(1+1/9),转换为求[27(1+1/9)]^(1/3) = 3*(1+1/9)^(1/3)
请大家指点迷津

30^(1/3)=(27+3)^1/3
27^1/3=3
所以对f(x)=x^1/3在27附近展开
如展开到一阶
f'(x)=1/3*x^(-2/3)
f(30)=f(27)+f'(27)*(30-27)
f'(27)=1/3*1/9=1/27
30^(1/3)=3+1/27*3=3+1/9
如展开到2阶
f(30)=f(27)+f'(27)*(30-27)+1/2f''(27)*(30-27)^2假如把30拆成1+29那么展开到一阶:f'(x)=1/3*x^(-2/3)f(30)=f(1)+f'(1)*(30-1)f'(1)=1/3*1=1/330^(1/3)=1+1/3*29=32/3这里错到哪里呢?Taylor展开是在目标点附近展开阿30在1的附近么试想你的差(30-1)=29后面1/n!*f(n阶导数)*29^n不收敛的不收敛的展开没有任何意义,你展开阶数越多错得越离谱试想你的Taylor序列是这样的1+5-255+45543-435462526...你能算得对吗