求导隐函数x/y+√(y/x)=1 sin(xy)-ln[(y+1)/y]=1,求y‘(0)
问题描述:
求导隐函数x/y+√(y/x)=1 sin(xy)-ln[(y+1)/y]=1,求y‘(0)
求导隐函数x/y+√(y/x)=1
sin(xy)-ln[(y+1)/y]=1,求y‘(0)
答
x/y+√(y/x)=1 两边对x求导:(y-xy')/y^2+1/[2√(y/x)]*(y'x-y)/x^2=02x^2(y-xy')+y^2(xy'-y)/√(y/x)=0这样只能得y-xy'=0,得:y'=y/x(这题从方程即可求得y=kx,其中k为常数)sin(xy)-ln[(y+1)/y]=1两边对x求导...