如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连EC,CD(1)求证:直线AB是圆O的切线  (2)试猜想BC、BD、BE三者之间的等量关系,并加以证明(3)(1)试猜想直线AB于⊙O的位置关系,并说明理由;(2)求证:BC2=BD•BE;(3)若tan∠CED=12,⊙O的半径为3,求OA的长

问题描述:

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连EC,CD

(1)求证:直线AB是圆O的切线

  (2)试猜想BC、BD、BE三者之间的等量关系,并加以证明

(3)(1)试猜想直线AB于⊙O的位置关系,并说明理由;
(2)求证:BC2=BD•BE;
(3)若tan∠CED=12,⊙O的半径为3,求OA的长

  1. 证明:在三角形OAB中,

    OA=OB,CA=CB所以C是AB中点,连接OC则OC垂直于AB 又直线AB经过⊙O上的点C所以,直线AB是圆O的切线

2  连接OC,因为三角形OEC是过直径的内接三角形,所以角ECD=90

      又由一问中,OCB=90,因为,OCE+OCD=ECD=90

                                                    BCD+OCD=OCB=90

所以,OCE=BCD 又OCE是等腰三角形,所以OCE=OEC  所以BCD=OEC 

 又公共角B

所以BDC与BCE 相似   所以  BC2=BD•BE

3  因为tan∠CED=12  即为:CD/CE=12    DE=6

由勾股定理知:CE =    CD=




⑴连接OC,∵OA=OB,AC=BC,OC=OC,∴ΔOCA≌ΔOCB,∴∠COA=∠OCB,又∠OCA+∠OCB=180°,∴∠OCA=90°,∴AB是圆O的切线.⑵BC^2=BD*BE.理由:由⑴知:∠OCD+∠BCD=90°,∵DE是直径,∴∠DCE=90°,即∠OCD+∠OCE=90°,∴∠DC...