均值不等式:已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?

问题描述:

均值不等式:已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r和h为何值时,内接圆柱的体积最大?

已知球半径为R,球内接圆柱底面半径为r,高为h,∵V=πr²hr²+﹙h/2﹚²=R²∴V=πr²h=π﹛R²-﹙h/2﹚²﹜h=π√﹛﹙R²-h²/4﹚﹙R²-h²/4﹚﹙h²﹚﹜=π√2...