已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是( ) A.19 B.18 C.15 D.13
问题描述:
已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是( )
A. 19
B. 18
C. 15
D. 13
答
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以 3k2+16k+16≤0,所以 (3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得x12+x22=(x1+x2)2-2x1x2=(k-2)2-2(k2+3k+5)=-k2-10k-6=19...