实数x,y满足tanx=x,tany=y,且|x|≠|y|,则sin(x+y)x+y−sin(x−y)x−y=_.

问题描述:

实数x,y满足tanx=x,tany=y,且|x|≠|y|,则

sin(x+y)
x+y
sin(x−y)
x−y
=______.

tanx=

sinx
cosx
=x
∴sinx=xcosx
同理,siny=ycosy
所以原式=
sinxcosy+cosxsiny
x+y
-
sinxcosy−cosxsiny
x−y

=
xcosxcosy−ycosxcosy
x−y
-
xcosxcosy+ycosxcosy
x+y

=
cosxcosy(x+y)
x+y
-
cosxcosy(x−y)
x−y

=cosxcosy-cosxcosy
=0
故答案为:0