求代数式y=(x+2)/(1+√(1-x²))+(1-√(1-x²))/x的最大值和最小值
问题描述:
求代数式y=(x+2)/(1+√(1-x²))+(1-√(1-x²))/x的最大值和最小值
答
由y=(x+2)/[1+√(1-x²)]+[1-√(1-x²)]/x,由-1<x<1,设x=sint,-π/2<t<π/2y=(sinx+2)/(1+cost)+(1-cost)/sint=(sin²t+2sint+1-cos²t)/sint(1+cost)=(2sint+2)/(1+cost)(1)当t=-...