线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行...线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行阶梯形?两者区别是什么?比如有些题目要是求解下列(非)齐次线性方程组的解,有些要求是基础解系和特解,这两种题型化成什么样?
问题描述:
线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行...
线性代数中求解齐次和非齐次线性方程组,到底要不要把系数矩或增广矩阵化到行最简形?还是只要化到行阶梯形?两者区别是什么?比如有些题目要是求解下列(非)齐次线性方程组的解,有些要求是基础解系和特解,这两种题型化成什么样?
答
你所说的最简形是不是标准形?如果是的话,那么在你求解时,只要将方程组化简到行阶梯形就可以了.两者区别在于标准形是矩阵经过行初等变换和列初等变换得到的,行阶梯形只是通过行初等变换得到的.都化成行阶梯形