设矩阵A=5 0 0 求矩阵A^-1 0 1 4 1 2 7,
问题描述:
设矩阵A=5 0 0 求矩阵A^-1 0 1 4 1 2 7,
答
A的逆为
1/5 0 0
-4/5 -7 4
1/5 2 -1
答
A=
5 0 0
0 1 4
1 2 7
(A,E)=
5 0 0 1 0 0
0 1 4 0 1 0
1 2 7 0 0 1
r3-2r2
5 0 0 1 0 0
0 1 4 0 1 0
1 0 -1 0 -2 1
r1-5r3
0 0 5 1 10 -5
0 1 4 0 1 0
1 0 -1 0 -2 1
r1*(1/5)
0 0 1 1/5 2 -1
0 1 4 0 1 0
1 0 -1 0 -2 1
r2-4r1,r3+r1
0 0 1 1/5 2 -1
0 1 0 -4/5 -7 4
1 0 0 1/5 0 0
r1r3
1 0 0 1/5 0 0
0 1 0 -4/5 -7 4
0 0 1 1/5 2 -1
A的逆为
1/5 0 0
-4/5 -7 4
1/5 2 -1