已知3x-2y-5z=0,2x-5y+4z=0,且x.y.z均不为0,求3x^2+2y^2+5z^2/5x^2+y^2-9z^2的值
问题描述:
已知3x-2y-5z=0,2x-5y+4z=0,且x.y.z均不为0,求3x^2+2y^2+5z^2/5x^2+y^2-9z^2的值
答
通过方程合并联立:x=3z;y=2z,结果=1
答
3x-2y-5z=0 12x-8y-20z=02x-5y+4z=0 10x-25y+20z=0两式相加22x-33y=022x=33yy=2/3x3x-2y-5z=0 15x-10y-25z=02x-5y+4z=0 4x-10y+8z=0两式相减11x-33z=011x=33zz=1/3x3x^2+2y^2+5z^2/5x^2+y^2-9z^2=(3x^2+8/9x^2+5/9x^...