已知3x-2y-5z=0,2x-5y+4z=0,且x,y,z均不为0,求3x平方+2y平方+5z平方/5x平方+y平方-9z平方的值.视z为常数,由已知两方程,可解得 x=3z y=2z 将其代入待求值式中,得 3x*x+2y*y+5z*z/5x*x+y*y-9z*z =[3(3z)^2+2(2z)^2+5z^2]/[5(3z)^2+(2z)^2-9z^2] =40z^2/40z^2 =1我看上述的解题步骤,后面的好理解,就是前面说的:视z为常数,由已知两方程,可解得 x=3z y=2z 不知具体是怎么由那已知的两方程得出来的?我知道3x-2y=5z,2x-5y=-4z,可就是不知道这x=3z ,y=2z 怎么算出来的?难道是凑数凑出来的吗?有窍门不?

问题描述:

已知3x-2y-5z=0,2x-5y+4z=0,且x,y,z均不为0,求3x平方+2y平方+5z平方/5x平方+y平方-9z平方的值.
视z为常数,由已知两方程,可解得
x=3z
y=2z
将其代入待求值式中,得
3x*x+2y*y+5z*z/5x*x+y*y-9z*z
=[3(3z)^2+2(2z)^2+5z^2]/[5(3z)^2+(2z)^2-9z^2]
=40z^2/40z^2
=1
我看上述的解题步骤,后面的好理解,就是前面说的:
视z为常数,由已知两方程,可解得
x=3z
y=2z
不知具体是怎么由那已知的两方程得出来的?我知道3x-2y=5z,2x-5y=-4z,可就是不知道这x=3z ,y=2z 怎么算出来的?难道是凑数凑出来的吗?有窍门不?

把3x-2y-5z=0和2x-5y+4z=0连成方程组,再把z当常数算,就可以解出x=3z,y=2z

我来解答前面的解法吧把两式编号为1和2,(1) 3x-2y-5z=0,(2) 2x-5y+4z=0.将(1)式乘以2,得6x-4y-10z=0 (3);将(2)式乘以3,得6x-15y+12z=0 (4);(3)式-(4)式,得y=2z;(5);再将(1)式乘以5,得15x-10y-25z=0(6);将(2)式乘...