如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.
问题描述:
如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.
答
△ADE是等边三角形,证明:∵△ABC是等边三角形,D为边AC的中点,∴BD⊥AC,即∠ADB=90°,由AE⊥EC知∠AEC=90°,∵在Rt△ABD和Rt△ACE中BD=ECAB=AC,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE,因D为边AC的中点,由AE...