已知函数f(x)=3tan(2x-π/3),求f(x)的定义域;比较f(π/2)与f(-π/8)的大小.
问题描述:
已知函数f(x)=3tan(2x-π/3),求f(x)的定义域;比较f(π/2)与f(-π/8)的大小.
答
解:
f(x)=3tan(2x-π/3)
所以
①定义域为2x-π/3≠π/2+kπ
x≠5π/12+kπ/2
②
f(π/2)=3tan(2π/3)=-3根号3f(-π/8)=-3tan(π/4+π/3)=-3(1+根号3)/(1-根号3)>0
所以f(π/2)