“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
问题描述:
“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
答
当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.
当a<0时,f(x)=(−ax+1)x=−a(x−
)x,1 a
结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图
它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.