求定积分∫(上π/2,下0)[1/(1+sinx)]dx

问题描述:

求定积分∫(上π/2,下0)[1/(1+sinx)]dx

令 t= tan(x/2),那么 0那么 根据公式 \x0d(1) sinx =[2tan(x/2)]/[1+(tan(x/2))^2]\x0d则有:sinx = 2t/[1+ t^2].\x0d而对于x则有:x= 2 arctan(t).\x0d下面就对定积分换元:\x0d∫{0,π/2} [1/(1+sinx)]dx\x0d=∫{0...