(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD. (2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?
问题描述:
(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.
(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?
答
证明:(1)∵∠BCA=∠ECD,
∴∠BCA-∠ECA=∠ECD-∠ECA,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
,
BC=AC ∠BCE=∠ACD EC=CD
∴△BCE≌△ACD(SAS),
∴BE=AD.
(2)图2、图3、图4中,BE和AD还相等,
理由是:如图图2、图3、图4,∵∠BCA=∠ECD,∠ACD+∠BCA=180°,∠ECD+∠BCE=180°,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
,
BC=AC ∠BCE=∠ACD CE=CD
∴△BCE≌△ACD(SAS),
∴BE=AD.