试用克拉默法则求下列线性方程组的解 x1+x3=1;2x1+2x2+3x3=3;x2+x3=-1x1+x3=12x1+2x2+3x3=3x2+x3=-1

问题描述:

试用克拉默法则求下列线性方程组的解 x1+x3=1;2x1+2x2+3x3=3;x2+x3=-1
x1+x3=1
2x1+2x2+3x3=3
x2+x3=-1

根据克拉默法则,该线性方程组的系数行列式为| 1 0 1 |D = | 2 2 3 | = 1 x (2 - 3) + 1 x (2 - 0) = 1| 0 1 1 |而各个未知数对应的行列式分别为| 1 0 1 |D1 = | 3 2 3 | = 1 x (2 - 3) + 1 x (3 + 2) = 4| -1 1 1 ||...