求正态分布的数学期望和方差的推导过程
问题描述:
求正态分布的数学期望和方差的推导过程
注意,是正态分布,不是标准正态分布.
好像需要二重积分,我怎么也做不对,
答
不用二重积分的,可以有简单的办法的.
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下.
于是:
∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u.
(2)方差
过程和求均值是差不多的,我就稍微略写一点了.
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证.