1.(2+1)(2²+1)······(2的2n方+1)2.100²-99²+98²-97²····+2²-1²
问题描述:
1.(2+1)(2²+1)······(2的2n方+1)
2.100²-99²+98²-97²····+2²-1²
答
1.(2+1)(2²+1)······(2的2n方+1)
=(2-1)(2+1)(2²+1)······(2的2n方+1)
=2^4n-1
答
1.(2+1)(2²+1)……(2^(2n)+1)
=(2-1)(2+1)(2²+1)……(2^(2n)+1)
=(2^2-1)(2²+1)……(2^(2n)+1)
=(2^4-1)……(2^(2n)+1)
=2^(4n)-1
2.100²-99²+98²-97²····+2²-1²
=(100+99)(100-99)+(98+97)(98-97)+……+(2+1)(2-1)
=199+195+……+3
=(199+3)×50÷2
=5050
答
1,(2-1)(2+1)(2²+1)······(2的2n方+1)=(2²-1)······(2的2n方+1)=2的4n方-12.100²-99²+98²-97²····+2²-1²=(100+99)(100-99)+(98+97)(98...