函数f(x)=x^2-8lnx,g(x)=-x^2+14x,若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围.

问题描述:

函数f(x)=x^2-8lnx,g(x)=-x^2+14x,若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求a的取值范围.

fx=x^2-8lnx,f '(x)=2x-8/x=2(x-4/x)
gx=-x^2+14x g '(x)= -2x+14=2(-x+7)
若函数fx与gx在区间(a,a+1)上均为增函数
则f '(x)=2x-8/x=2(x-4/x)>0
x>4/x
或者x>2;
或者-2x不是应该大于0吗lnx-2