已知a,b,x为正数,且lg(bx).lg(ax)+1=0,求a/b取值范围

问题描述:

已知a,b,x为正数,且lg(bx).lg(ax)+1=0,求a/b取值范围

lg(bx)lg(ax)+1=0,且a,b,x为正数
则(lga+lgx)(lgb+lgx)+1=0
(lgx)^2+(lga+lgb)lgx+1+lgalgb=0
这个方程有解
所以(lga+lgb)^2-4lgalgb-4≥0
(lga)^2+2lgalhb+(lgb)^2-4lgalgb-4≥0
(lga-lgb)^2≥4
lga-lgb≥2或 lga-lgb≤-2
lg(a-b)≥2或 lga/b≤-2
所以a/b≥100 或0