如图1,直线y=-3/4x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F. (1)当四边形OBCE是矩形时,求点C的坐标;
问题描述:
如图1,直线y=-
x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内任意一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.3 4
(1)当四边形OBCE是矩形时,求点C的坐标;
(2)如图2,若⊙C与y轴相切于点D,求⊙C的半径r.
答
(1) 把x=0代入y=-
x+3得:y=3,3 4
把y=0代入y=-
x+3得:x=4,3 4
∴A(4,0),B(0,3),
即AO=4,OB=3,
由勾股定理得:AB=5,
∵四边形OBCE是矩形,
∴∠CBO=90°,CE=OB=3,
∵AB切⊙C于F,
∴∠CFB=90°=∠CBO,
∴∠FCB+∠FBC=90°,∠FBC+∠ABO=90°,
∴∠FCB=∠AOB,
∵∠CFB=∠AOB=90°,
∴△CFB∽△BOA,
∴
=CB AB
,CF OB
∴
=CB 5
,3 3
∴CB=5,
∴C的坐标是(-5,3).
(2) ∵⊙C切AB于F,切x轴于E,切y轴于D,
∴BF=BD,AF=AE,∠CDO=∠DOE=∠CEO=90°,DC=CE,
∴四边形CDOE是正方形,
∴EC=OD
∵⊙C的半径是r,
∴CE=CD=DO=OE=r,
∵A(4,0),AB=5,
∴4+r=5+BF=5+BD=5+(3-r),
即4+r=5+(3-r),
r=2,
答:⊙C的半径是2.