证明不等式e^|x-1|≥-x2+2x
问题描述:
证明不等式e^|x-1|≥-x2+2x
答
令f(x)=e^|x-1|+x2-2x
x>=1时;f'(x)=e^(x-1)+2x-2
容易看出f'(x)=e^(x-1)+2x-2在x>=1时增函数,
f'(x)>=f'(1)=1>0;
所以f(x)=e^|x-1|+x2-2x在x>=1时是增函数,
f(x)>f(1)=e^|1-1|+1^2-2*1=0
即证得
e^|x-1|≥-x2+2x
同理x