因式分解;1 (X²+4Y²)²-16X²Y²; 2 (a²+1)²-4(a²+1)+4
问题描述:
因式分解;1 (X²+4Y²)²-16X²Y²; 2 (a²+1)²-4(a²+1)+4
答
答:
1)平方差公式
(X²+4Y²)²-16X²Y²
=(x²+4y²-4xy)(x²+4y²+4xy)
=(x-2y)²(x+2y)²
2)
(a²+1)²-4(a²+1)+4
=(a²+1)²-4(a²+1)+2²
=(a²+1-2)²
=(a²-1)²
=(a-1)²(a+1)²
答
1 (X²+4Y²)²-16X²Y²;
=(X²+4Y²)²-(4XY)²
=(X²+4Y²+4XY)(X²+4Y²-4XY)
=(X+2Y)²(X-2Y)²
2 (a²+1)²-4(a²+1)+4
=(a²+1-2)²
=(a²-1)²
=(a+1)²(a-1)²
答
(1)(X²+4Y²)²-16X²Y²
=(X²+4Y²+4XY)(X²+4Y²-4XY)
=(X+2Y)²(X-2Y)²
(2)(a²+1)²-4(a²+1)+4
=(a²+1-2)²
=(a²-1)²
=(a+1)²(a-1)²
答
(X²+4Y²)²-16X²Y²
=[(x^2+4y^2)+4xy][(x^2+4y^2)-4xy]
=(x+2y)^2(x-2y)^2
(a²+1)²-4(a²+1)+4
=[(a^2+1)-2]^2
=(a^2-1)^2
=(a+1)^2(a-1)^2