计算多项式4x^2+9y^2+8x-12y+12的值时,取任意x.y的值,发现结果总是正数,请说明理由
问题描述:
计算多项式4x^2+9y^2+8x-12y+12的值时,取任意x.y的值,发现结果总是正数,请说明理由
答
4x^2+9y^2+8x-12y+12
=(4x^2+8x+4)+(9y^2-12y+4)+4
=(2x+2)^2+(3y-2)^2+4
(2x+2)^2≥0
(3y-2)^2≥0
(2x+2)^2+(3y-2)^2+4>0
即:4x^2+9y^2+8x-12y+12>0
所以:无论x,y取何值,4x^2+9y^2+8x-12y+12总是正数.