已知关于x的一元二次方程x2-(2k+1)x+k2+k=0. (1)求证:方程有两个不相等的实数根; (2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.

问题描述:

已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.

(1)证明:∵△=(2k+1)2-4(k2+k)=1>0,∴方程有两个不相等的实数根;(2)∵原方程化为(x-k)(x-k-1)=0,∴x1=k,x2=k+1,不妨设AB=k,AC=k+1,∴BC=16-AB-AC=15-2k,当AB=BC,即k=15-2k,解得k=5;当AC=BC...