设函数f(x)的定义域为(0,+∞),x1>0,x2>0,求证:若f(x)/x单调下降,则f(x1+ x2)≤f(x1)+f(x2)
设函数f(x)的定义域为(0,+∞),x1>0,x2>0,求证:若f(x)/x单调下降,则f(x1+ x2)≤f(x1)+f(x2)
求专业.
由f(x)的定义域为(0,+∞),x1>0,x2>0,
故x1+x2>x1,x1+x2>x2,由f(x)/x单调递减,
故f(x1+x2)/(x1+x2) ≤ f(x1)/x1 =>x1*f(x1+x2)/(x1+x2) ≤ f(x1)
f(x1+x2)/(x1+x2) ≤ f(x2)/x2=>x2*f(x1+x2)/(x1+x2) ≤f(x2)
两式相加得, (x1+x2)*f(x1+x2)/(x1+x2) ≤ f(x1)+f(x2),
故f(x1+ x2)≤f(x1)+f(x2)两式相加得, (x1+x2)*f(x1+x2)/(x1+x2) ≤ f(x1)+f(x2)。怎么加出来的 你用笔下 拍下 发邮件给我吧kumoshuai@163.com由f(x)的定义域为(0,+∞),x1>0,x2>0,故x1+x2>x1,x1+x2>x2,由f(x)/x单调递减,故f(x1+x2)/(x1+x2) ≤ f(x1)/x1 =>x1*f(x1+x2)/(x1+x2) ≤ f(x1)①f(x1+x2)/(x1+x2) ≤ f(x2)/x2=>x2*f(x1+x2)/(x1+x2) ≤f(x2)②①+② 两式相加得, (x1+x2)*f(x1+x2)/(x1+x2) ≤ f(x1)+f(x2),(这一步是把①和②中相同的因式 f(x1+x2)/(x1+x2))提取出来,然后把①剩下的x1和②剩下的x2相加)故f(x1+ x2)≤f(x1)+f(x2) (这一步是把式子等号左边的(x1+x2)*f(x1+x2)/(x1+x2)中分子,分母同除于(x1+x2))