已知函数f(x)=x2-6x+8,x∈[1,a],并且函数f(x)的最小值为f(a),则实数a的取值范围是_.
问题描述:
已知函数f(x)=x2-6x+8,x∈[1,a],并且函数f(x)的最小值为f(a),则实数a的取值范围是______.
答
函数f(x)=x2-6x+8=(x-3)2-1,x∈[1,a],并且函数f(x)的最小值为f(a),
又∵函数f(x)在区间[1,3]上单调递减,∴1<a≤3,
故答案为:(1,3].