已知f(x)是定义域为R的奇函数,且f(1)=0,当x>0时,2f(x)+xf'(x)>0,则不等式f(x)>0解集是
问题描述:
已知f(x)是定义域为R的奇函数,且f(1)=0,当x>0时,2f(x)+xf'(x)>0,则不等式f(x)>0解集是
已知结果是(-1,0)U(1,+∞),
答
令g(x)=x^2f(x) g'(x)=2xf(x)+x^2f'(x) ∵当x>0时,2f(x)+xf'(x)>0 ∴当x>0时g'(x)>0 当x>1时,f(x)>0 当1>x>0时,f(x)x>-1时,f(x)>0当x>1时,f(x)>0 这一步是怎么来的?