因式分解x^2+4y^2+4xy+1和(x+1)(x+2)(x+3)(x+4)+1怎么分?急,
问题描述:
因式分解x^2+4y^2+4xy+1和(x+1)(x+2)(x+3)(x+4)+1怎么分?急,
答
1.不会……但如果是x^2+4y^2+4xy-1,就应该是
原式=(x+2y)^2-1
=(x+2y+1)(x+2y-1)
2.原式=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x²+5x+4)(x²+5x+6)+1
为方便理解,就设x²+5x+5=A
原式=(A-1)(A+1)+1
=A^2-1+1
=A^2
=(x²+5x+5)^2
答
(x+1)(x+2)(x+3)(x+4)+1
=(x^2+5x+5-1)(x^2+5x+5+1)+1
=(x^2+5x+5)^2
答
第一题是不是出错了?应该是x^2+4y^2+4xy-1吧.如果是那就这样做:=(x+2y)^2-1=(x+2y-1)(x+2y+1)说实话x^2+4y^2+4xy+1这道题我解不出来,如果我解出来了,我肯定告诉你!第二题是这样做的:=(x+1)(x+4)*(x+2)(x+3)+1 =(x...
答
(1)第一题是减1吧
(x+2y)²-1
=(x+2y+1)(x+2y-1)
(2)
(x+1)(x+2)(x+3)(x+4)+1
=(x+1)(x+4)(x+2)(x+3)
=(x²+5x+4)(x²+5x+6)
=(x²+5x)+10(x′+5x)+25
=(x²+5x+5)²