化简[2sin50°+sin10°(1+3tan10°)]1+cos20°.

问题描述:

化简[2sin50°+sin10°(1+

3
tan10°)]
1+cos20°

原式=[2sin50°+sin10°(1+

3
sin10°
cos10°
)]
1+cos20°

=(2sin50°+sin10°•
cos10°+
3
sin10°
cos10°
1+cos20°

=(2sin50°+2sin10°•
sin(10°+30°)
cos10°
1+cos20°

=
2sin50°cos10°+2sin10°sin40°
cos10°
1+cos20°

=2cos(40°-10°)•
2
cos10°
cos10°

=2cos30°×
2

=
6