已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根号3)

问题描述:

已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根号3)
已知双曲线C的中心在原点,抛物线y^2=2根号5x 的焦点是双曲线C的一个焦点,且双曲线C过点(1,根号3 )
求1.双曲线方程
2.设直线y=kx+1与双曲线交与A.B两点,问:是否存在实数k,是A.B两点关于直线y=mx对称(m为常数),若存在,求出k,若不存在,说明理由
y^2=2根号5x 下面回答我知道..但....根号我不会打..是不是漏看了?

1)易得抛物线与双曲线共同焦点为(5^0.5,0),于是在双曲线中c^2=a^2+b^2=5,又x^2/a^2-y^2/b^2=1过(1,3^0.5),代入得1/a^2-3/b^2=1,联立解得a^2=1,b^2=4,故双曲线方程为x^2-y^2/4=1.2)用点差法.设直线y=kx+1与双曲线交于两点A(x1,y1),B(x2,y2),AB中点M(xo,yo),则有x1+x2=2xo,y1+y2=2yo,又A,B在曲线上有x1^2-y1^2/4=1,x2^2-y2^2/4=1,两式相减得AB斜率k=(y1-y2)/(x1-x2)=4(x1+x2)/(y1+y2)=4xo/yo,即kyo=4xo.(1)若A,B关于直线y=mx对称,则中点M(xo,yo)必在其上有yo=mxo.(2)联立(1)(2)解得k=4/m,(m!=0)但直线y=kx+1与直线y=mx垂直又得k=-1/m !=4/m,(矛盾)因此这样的实数k是不存在的.(本题易判断m不为零)