函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为_.
问题描述:
函数f(x)=-x2+4x-1在[t,t+1]上的最大值为g(t),则g(t)的最大值为______.
答
因为f(x)=-x2+4x-1开口向下,对称轴为x=2,所以须分以下三种情况讨论
①轴在区间右边,t+1≤2⇒t≤1,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t+1)=-t2+4t-1.
故g(t)=-t2+4t-1.
②轴在区间中间,t<2<t+1⇒1<t<2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(2)=-22+4×2-1=3.
故g(t)=3.
③轴在区间左边,t≥2,f(x)=-x2+4x-1在[t,t+1]上的最大值为f(t)=-t2+2t+2.
故g(t)=-t2+2t+2.
∴g(t)=
,
−t2+4t−1 (t≤1) 3 (1<t<2) −t2+2t+2 (t≥ 2)
∴g(t)的最大值为3
故答案为;3