设矩阵A,B属于复数域上的n维矩阵,A,B可交换,即AB=BA,证明A的特征子空间一定是B的不变子空间
问题描述:
设矩阵A,B属于复数域上的n维矩阵,A,B可交换,即AB=BA,证明A的特征子空间一定是B的不变子空间
答
对A的属于特征值λ的特征子空间Vλ中的任一向量x
有 Ax = λx
所以 A(Bx) = BAx = λBx
所以 Bx 属于 Vλ
所以 A的特征子空间Vλ是B的不变子空间.