已知:a>1,b>1,c>1,lga+lgb=1,求log(a)(c)+log(b)(c)≥4lgc.注:log(a)(c)表示以a为底c的对数.

问题描述:

已知:a>1,b>1,c>1,lga+lgb=1,求log(a)(c)+log(b)(c)≥4lgc.注:log(a)(c)表示以a为底c的对数.

利用换底公式,log(a)(c)=lgc/lga,则需证明lgc/lga+lgc/lgb≥4lgc,只需证明1/lga+1/lgb≥4,通分只需证明1/(lga*lab)>=4,此式可有lga+lgb>=2√(lga*lgb)得。

logac=lgc/lga
logbc=lgc/lgb
log(a)(c)+log(b)(c)=lgc*(1/lga+1/lgb)
=lgc(lga+lgb)/(lgalgb)
又lgalgb《=(lga+lgb)^2/4=1/4
所以lgc(lga+lgb)/(lgalgb)》=4lgc

lga+lgb=1ab=10logaC+logbC=lgc(1/lga +1/lgb)=lgc[(lga+lgb)/(lga*lgb)]=lgc/(lga*lgb)lga+lgb=1>=2√(lga*lgb)所以 1/(lga*lgb)>=4当且仅当 lga=lgb时取得等号,这时候a=b=5logaC+logbC=lgc/(lga*lgb)>=4lgc...