利用莱布尼茨判别法判别级数收敛性时,条件中A(n)>0,是用什么判断的?是利用当n→∞时,求A(n)的极限如题.

问题描述:

利用莱布尼茨判别法判别级数收敛性时,条件中A(n)>0,是用什么判断的?是利用当n→∞时,求A(n)的极限
如题.

你这样理解是错误的.莱布尼茨判别法定义如下:如果数列{an} (an>0) 单调减少且收敛于0,那么交错级数∑(-1)^(n+1)·an收敛.从数列{an}单调减少且收敛于0这句话来看,很明显当n→∞时,an的极限为0,你能从一个数列的极限...