设非齐次线性方程组Ax=b的系数矩阵的秩为r,而η1,η2,...ηn-r+1是它的n-r+1个线性无关的解,求证它的任一解可以表示为x=k1η1+k2η2+...+kn-r+1ηn-r+1(已知k1+k2+...+kn-r+1=1)
问题描述:
设非齐次线性方程组Ax=b的系数矩阵的秩为r,而η1,η2,...ηn-r+1是它的n-r+1个线性无关的解,求证
它的任一解可以表示为x=k1η1+k2η2+...+kn-r+1ηn-r+1
(已知k1+k2+...+kn-r+1=1)
答
证明:记m=n-r+1
(1)由 η1,η2,...,ηq线性无关
可得 η1-ηq,η2-ηq,...,ηq-1-ηq 线性无关.(略)
(2)因为 r(A)=r
所以 η1-ηq,η2-ηq,...,ηq-1-ηq 是 AX=0 的基础解系.
(3) 所以Ax=b的任一解都可表示为
ηq + k1(η1-ηq)+k2(η2-ηq)+...+kq-1(ηq-1-ηq)
= k1η1+k2η2+...kq-1ηq-1 + (1-k1-k2-...-kq-1)ηq
令 kq = 1-k1-k2-...-kq-1
则 k1+k2+...+kq=1
且 Ax=b的任一解都可表示为 k1η1+k2η2+...kq-1ηq-1+kqηq.