收敛数列与有界数列无穷小数列乘以有界数列还是无穷小数列.我想问,如果一个数列收敛于a,那么这个收敛数列乘以有界数列还是收敛数列吗?如果收敛,那么极限是多少呢?能写出证明过程吗?
问题描述:
收敛数列与有界数列
无穷小数列乘以有界数列还是无穷小数列.我想问,如果一个数列收敛于a,那么这个收敛数列乘以有界数列还是收敛数列吗?如果收敛,那么极限是多少呢?
能写出证明过程吗?
答
还是收敛数列!有界函数的界是M,则收敛数列的极限是M*a。
答
不是 例如油界数列取1 -1 1 -1 1 -1...
答
首先要搞清楚有界和收敛的概念
数列收敛是说它的极限是a,即无限趋近于a.数列有界是说它的值域控制在一个确定的范围内.反例:当有界数列 {Xn}为摇摆数列时,如0,1,0,1,0,1,0,1…………时相乘后的数列就不在只趋近一个值了,所以不再存在极限,所以也不再是收敛数列