利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).一楼怎么说明(2n+2)(2n+1)/a^(n+1)

问题描述:

利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).
一楼怎么说明(2n+2)(2n+1)/a^(n+1)

An=(2n)!/a^(n!)
A1=2/a
易知An>0

An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n+1)1 => a=1+ba^(n+1)=(1+b)^(n+1)=1+b*(n+1)+b^2*(n+1)n/2+b^3*(n+1)n(n-1)/6+...(2n+2)(2n+1...