利用因式分解 平方差公式1/(2²-1)+1/(3²-1)+……+1/(24²-1)
问题描述:
利用因式分解 平方差公式
1/(2²-1)+1/(3²-1)+……+1/(24²-1)
答
1/(2²-1)+1/(3²-1)+……+1/(24²-1)
=1/(2-1)(2+1)+1/(3-1)(3+1)+.....1/(24-1)(24+1)
=1/1*3+1/2*4+1/3*5+....+1/23*25
=0.5*[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...(1/23-1/25)
=0.5*[1+1/2-1/24-1/25]
=851/600
答
利用平方差公式:n^2-1=(n+1)(n-1)采用裂项法将一项分为两项的差:1/[n^2-1]=1/[(n+1)(n-1)]=1/2*[1/(n-1)-1/(n+1)]即:1/(2^2-1)=1/2*(1/1-1/3) 姴项之后相互抵消:故原式=1/2*[1-1/3+1/2-1/4+1/3-1/5+……+1/23-1...