在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为______.

问题描述:

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为______.


当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,
过E作EF⊥BD,垂足为F点,可得∠EFB=90°,
∵EC=ED,∴F为CD的中点,即CF=DF=

1
2
CD,
∵△ABC为等边三角形,∴∠ABC=60°,
∴∠BEF=30°,
∵BE=AB+AE=1+2=3,
∴FB=
1
2
EB=
3
2

∴CF=FB-BC=
1
2

则CD=2CF=1;
当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,
过E作EF⊥BD,垂足为F点,可得∠EFC=90°,
∵EC=ED,∴F为CD的中点,即CF=DF=
1
2
CD,
∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,
∴∠BEF=30°,
∵BE=AE-AB=2-1=1,
∴FB=
1
2
BE=
1
2

∴CF=BC+FB=
3
2

则CD=2CF=3,
综上,CD的值为1或3.
故答案为:1或3
答案解析:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF-BC求出CF的长,即可得到CD的长;
当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.
考试点:等边三角形的性质.
知识点:此题考查了等边三角形的性质,含30度直角三角形的性质,利用了分类讨论的思想,熟练掌握等边三角形的性质是解本题的关键.