在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F.交CA的延长线于P,CH∥AB交AD的延长线于H.解答以下问题.(1)求证:△APF是等腰三角形;(2)试在图中找出一对全等的三角形并给予证明;(3)试猜想AB与PC的大小有什么关系?并证明你的猜想.

问题描述:

在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F.交CA的延长线于P,CH∥AB交AD的延长线于H.解答以下问题.
(1)求证:△APF是等腰三角形;
(2)试在图中找出一对全等的三角形并给予证明;
(3)试猜想AB与PC的大小有什么关系?并证明你的猜想.

证明:(1)∵EF∥AD,
∴∠P=∠DAC,∠PFA=∠DAF,
∵AD平分∠BAC,
∴∠DAC=∠DAF,
∴∠P=∠PFA,
∴AP=AF,
∴△APF是等腰三角形.
(2)△DCH≌△BEF.
证明:∵AB∥CH,
∴∠BAD=∠H(两直线平行,内错角相等),∠B=∠DCH(两直线平行,内错角相等),
又∵EF∥AD(已知),
∴∠BFE=∠BAD;
∴∠BFE=∠H,
∵EF∥AD,
∴∠BEF=∠BAD,
又∵∠BDA=∠CDH(对顶角相等),
∴∠BEF=∠CDH,
∴∠BEF=∠CDH
则在△DCH和△BEF中,

∠BFE=∠H
∠BEF=∠CDH
BE=CD

∴△DCH≌△BEF.
(3)AB=PC,
理由:∵AD平分∠BAC,
∴∠BAD=∠HAC,
∵AB∥CH,
∴∠HAC=∠H,
∴AC=CH,
∴△BEF≌△CDH,
∴BF=CH,
∴AC=BF,
∵△APF为等腰三角形,
∴AP=AF,
∴AC+AP=BF+AF,即AB=PC.
答案解析:(1)由平行线EF∥AD,可得同位角、内错角相等,即∠P=∠DAC,∠PFA=∠DAF,进而再由平分线的性质以及角之间的转化,即可得出结论;
(2)可由两角夹一边求解△DCH≌△BEF;
(3)在(2)的基础上可得出线段之间的关系,通过等量代换即可.
考试点:全等三角形的判定与性质;平行线的性质;等腰三角形的判定.
知识点:本题主要考查了平行线的性质以及全等三角形的判定及性质和等腰三角形的判定问题,能够熟练掌握并运用.