f(x1,…xn)是n元正定二次型,怎么证明存在正实数λ使f(x1,…xn)≥λ(x1^2+…+xn^2)设f(x1,…xn)是n元正定二次型,证明存在正实数λ,使得对任意实数xi,i=1,…,n,有f(x1,…xn)≥λ(x1^2+…+xn^2)但是还是没有解释关键。我知道是跟特征值有关,通过变换可以对角化,那样f(x1,…xn)=λ1y1^2+…+λnyn^2,λ1,…,λn是A的特征值。但是题目是求xi的平方和,就是说我不知道X和Y的关系怎么连接

问题描述:

f(x1,…xn)是n元正定二次型,怎么证明存在正实数λ使f(x1,…xn)≥λ(x1^2+…+xn^2)
设f(x1,…xn)是n元正定二次型,证明存在正实数λ,使得对任意实数xi,i=1,…,n,有f(x1,…xn)≥λ(x1^2+…+xn^2)
但是还是没有解释关键。我知道是跟特征值有关,通过变换可以对角化,那样f(x1,…xn)=λ1y1^2+…+λnyn^2,λ1,…,λn是A的特征值。但是题目是求xi的平方和,就是说我不知道X和Y的关系怎么连接

写成矩阵形式f(x)=x'Ax,考察A的最小特征值即可.
补充:
用正交变换做对角化,然后自然就有||x||=||Qx||=||y||.