1 1 1 1 1 1-1-1 1-1 1-1 1-1-1 1 用初等变换求逆矩阵

问题描述:

1 1 1 1 1 1-1-1 1-1 1-1 1-1-1 1 用初等变换求逆矩阵

(A,E)=
1 1 1 1 1 0 0 0
1 1 -1 -1 0 1 0 0
1 -1 1 -1 0 0 1 0
1 -1 -1 1 0 0 0 1
第1行乘-1加到2,3,4行
1 1 1 1 1 0 0 0
0 0 -2 -2 -1 1 0 0
0 -2 0 -2 -1 0 1 0
0 -2 -2 0 -1 0 0 1
r3-r2-r3
1 1 1 1 1 0 0 0
0 0 -2 -2 -1 1 0 0
0 -2 0 -2 -1 0 1 0
0 0 0 4 1 -1 -1 1
r2*(-1/2), r3*(-1/2), r4*(1/4), r2r3
1 1 1 1 1 0 0 0
0 1 0 1 1/2 0 -1/2 0
0 0 1 1 1/2 -1/2 0 0
0 0 0 1 1/4 -1/4 -1/4 1/4
r1-r4,r2-r4,r3-r4
1 1 1 0 3/4 1/4 1/4 -1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4
r1-r2-r3
1 0 0 0 1/4 1/4 1/4 1/4
0 1 0 0 1/4 1/4 -1/4 -1/4
0 0 1 0 1/4 -1/4 1/4 -1/4
0 0 0 1 1/4 -1/4 -1/4 1/4
逆就是右边那个4*4块