化简求值 (3x-y)的平方-(2x+y)的平方-5x(x-y) 其中 x=2 y=1

问题描述:

化简求值 (3x-y)的平方-(2x+y)的平方-5x(x-y) 其中 x=2 y=1

(3 * 2 - 1)^2 - (2 * 2 + 1)^2 - 5 * 2 * (2-1)
= (6 - 1)^2 - (4 + 1)^2 - 10 * (1)
= 5^2 = 5^2 - 10
= -10


原式=9x^2-6xy+y^2-4x^2-4xy-y^2-5x^2+5xy=-5xy=-5*2*1=-10

用平方差公式
原式=(3x-y-2x-y)(3x-y+2x+y)-5x(x-y)
=(x-2y)5x-5x(x-y)
=5x(x-2y-x+y)
=5x(-y)
带入=5*2*(-1)
=-10

原式=-5xy
则原式=-5*2*1=-10

(3x-y)的平方-(2x+y)的平方-5x(x-y)
=(3x-y+2x+y)(3x-y-2x-y)-5x(x-y)
=5x(x-2y)-5x(x-y)
=5x(x-2y-x+y)
=5x*(-y)
=-5xy
=-5*2*1
=-10