在ABC各边AB BC CA上分别取AD BE CF各等于边长的三分之1,求面积DEF=面积ABC的3分之1
问题描述:
在ABC各边AB BC CA上分别取AD BE CF各等于边长的三分之1,求面积DEF=面积ABC的3分之1
答
(图省略)
连接CD
则△ACD面积=三分之一△ABC面积
△ADF面积=三分之二△ACD面积
所以△ADF面积=九分之二△ABC面积
同理,再连接AE、BF,可证△BDE面积=九分之二△ABC面积
△CEF面积=九分之二△ABC面积
所以△DEF面积=△ABC面积-△ADF面积-△BDE面积-△CEF面积=三分之一△ABC面积
答
(图省略)连接CD则△ACD面积=三分之一△ABC面积△ADF面积=三分之二△ACD面积所以△ADF面积=九分之二△ABC面积同理,再连接AE、BF,可证△BDE面积=九分之二△ABC面积△CEF面积=九分之二△ABC面积所以△DEF面积=△ABC面积...