如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.

问题描述:

如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.

证明:∵梯形ABCD是等腰梯形,AD∥BC,
∴∠B=∠C,
∵GF=GC,
∴∠GFC=∠C,
∴∠GFC=∠B,
∴AB∥GF,
又∵AE=GF,
∴四边形AEFG是平行四边形.
答案解析:由等腰梯形的性质可得出∠B=∠C,再根据等边对等角的性质得到∠C=∠GFC,所以∠B=∠GFC,故可得出AB∥GF,再由AE=GF即可得出结论.
考试点:等腰梯形的性质;平行四边形的判定.
知识点:本题考查的是等腰梯形的性质及平行四边形的判定定理,根据题意得出AB∥GF是解答此题的关键.