如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF. 求证:四边形BGFE是平行四边形.
问题描述:
如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.
求证:四边形BGFE是平行四边形.
答
证明:∵FG∥AB,
∴∠BAD=∠AGF.
∵∠BAD=∠GAF
∴∠AGF=∠GAF,
∴AF=GF.
∵BE=AF,
∴FG=BE.
又∵FG∥BE,
∴四边形BGFE为平行四边形.