解方程组3x^2-y^2=8&x^2+xy+y^2=4
问题描述:
解方程组3x^2-y^2=8&x^2+xy+y^2=4
答
∵2x²+2xy+2y²=2(x²+xy+y²)=8=3x²-y²
∴x²-2xy-3y²=(x-3y)(x+y)=0
∴x=3y或-y
再联立8=3x²-y²可得:
y=2/√13,x=6/√13 或 y=-2/√13,x=-6/√13 或 y=2,x=-2 或 y=-2,x=2
答
x^2+xy+y^2=4=>2x^2+2xy+2y^2=8联立3x^2-y^2=8相减得=>x^2-2xy-3y^2=0=>(x-3y)(x+y)=0=>x=3y或x=-y讨论:1)x=3y=>3(3y)^2-y^2=8=>26y^2=8=>y=正负(根号(4/13))x=正负3*(根号(4/13))2)x=-y=>(-y)^2+(-y)*y+y^...